Algebra

Binomial Theorem

Expand binomials raised to any power.

The Formula
(a+b)ⁿ = Σ C(n,k)·aⁿ⁻ᵏ·bᵏ
Used for: Expanding binomials raised to any power
a, bTerms in the binomial
nPower/exponent
C(n,k)Binomial coefficient

🎯 Key Concepts

Understanding binomial expansion:

🔢C(n,k) = n! / (k!(n-k)!)

Binomial coefficient formula

📐Pascal's Triangle

Quick way to find coefficients

🔄n+1 terms total

Expansion has one more term than the power

📝 Worked Examples

Expand (x+1)³

Expand: (x+1)³ = ?
1
Pascal's row for n=31, 3, 3, 1
2
Apply powers1·x³ + 3·x²·1 + 3·x·1² + 1·1³
3
Simplifyx³ + 3x² + 3x + 1
Answer: x³ + 3x² + 3x + 1

Expand (2x-1)⁴

Expand: (2x-1)⁴ = ?
1
Pascal's row for n=41, 4, 6, 4, 1
2
First terms1(2x)⁴ + 4(2x)³(-1) + 6(2x)²(-1)²...
3
Simplify16x⁴ - 32x³ + 24x² - 8x + 1
Answer: 16x⁴ - 32x³ + 24x² - 8x + 1

💡 Pro Tips

Pascal's Triangle

Row n: 1, n, n(n-1)/2, ... — each entry is sum of two above it

Signs alternate

For (a-b)ⁿ, signs alternate: +, -, +, -, ...

First & last terms

First term: aⁿ, Last term: bⁿ