Trigonometry

Trigonometric Identities

Essential identities for simplifying trig expressions.

The Formula
sin²θ + cos²θ = 1
Used for: Simplifying trigonometric expressions and proving equations
sin θSine of angle θ
cos θCosine of angle θ
tan θTangent (sin/cos)

📋 Key Identities

Organized by type:

📐Pythagorean

sin²θ + cos²θ = 1

1 + tan²θ = sec²θ

1 + cot²θ = csc²θ

📐Quotient

tan θ = sin θ / cos θ

cot θ = cos θ / sin θ

📐Reciprocal

csc θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

📝 Worked Examples

Simplify Using Pythagorean

Problem: Simplify: sin²θ + cos²θ + tan²θ
1
Use identitysin²θ + cos²θ = 1
2
Substitute1 + tan²θ
3
Use identity1 + tan²θ = sec²θ
Answer: sec²θ

Prove Identity

Problem: Prove: tanθ·cosθ = sinθ
1
Substitute tanθ(sinθ/cosθ)·cosθ
2
Cancel cosθsinθ
Answer: Proven! ✓

💡 Pro Tips

Start with one side

When proving, work on ONE side of the equation only

Convert to sin/cos

When stuck, convert everything to sin and cos

Memorize Pythagorean

sin²θ + cos²θ = 1 is the most used identity!